## The Synthesis of the First Tetra- and Penta-gold Decaosmium Clusters, X-Ray Structure Analysis of $[Os_{10}Au_4C(CO)_{24}{P(C_6H_{11})_3}_3]$

## Victoria Dearing,<sup>a</sup> Simon R. Drake,<sup>b</sup> Brian F. G. Johnson,<sup>b</sup> Jack Lewis,\*<sup>b</sup> Mary McPartlin,\*<sup>a</sup> and Harold R. Powell<sup>a</sup>

School of Chemistry, Polytechnic of North London, Holloway Road, London N7 8DB, U.K.
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

The clusters  $[Os_{10}Au_4C(CO)_{24}{PR_3}_3]$  {PR<sub>3</sub> = P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub> (**3a**), PPh<sub>3</sub> (**3b**), or PMe<sub>2</sub>Ph (**3c**)} and  $[Os_{10}Au_5C(CO)_{24}{PPh_3}_4]^+$  (**4**) have been prepared from the reaction of the dianion  $[Os_{10}C(CO)_{24}]^{2-}$  (**1**) with  $[(AuPR_3)_3O]BF_4$  which involves the corresponding intermediate monoanions  $[Os_{10}C(CO)_{24}AuPR_3]^-$ ; the structure of the cluster (**3a**) has been fully established by X-ray single crystal analysis and contains a novel heterometallic polyhedron consisting of fused Au<sub>4</sub> and Os<sub>10</sub> tetrahedra linked *via* a vertex and a capping edge, respectively.

Triorganophosphine metal complexes are very widely used in the synthesis of mixed metal clusters. The treatment of Group 8 polynuclear metal carbonyl species with  $R_3PAu^{+,1}$  $R_3PAuMe$ ,<sup>2</sup> or  $[(R_3PAu)_3O]BF_4$ <sup>3</sup> has been shown to add up to three gold atoms to the cluster. X-Ray structure analysis<sup>†</sup> shows that reaction of the oxonium reagent  $[(R_3PAu)_3O]^+$ with the giant tetrahedral dianion  $[Os_{10}C(CO)_{24}]^{2-}$  (1) leads to the formation of the unusual tetra-gold decaosmium cluster  $[Os_{10}Au_4C(CO)_{24}{P(C_6H_{11})_3}_3]$  (3a), illustrated in Figure 1.

The reaction of the dianion (1) with four equivalents of the gold oxonium salt [{AuPR<sub>3</sub>}<sub>3</sub>O][BF<sub>4</sub>] (Scheme 1) produces initially the known<sup>4</sup> gold-osmium cluster monoanion  $[Os_{10}C(CO)_{24}AuPR_3]^-$  (2a)--(2c). If the reactants are stirred for 24 h, and then allowed to stand for 6--7 days at 0 °C, a further reaction occurs to yield the novel tetra-gold decaosmium cluster  $[Os_{10}Au_4C(CO)_{24}(PR_3)_3]$  [where PR<sub>3</sub> =  $P(C_6H_{11})_3$  (3a), PPh<sub>3</sub> (3b), and PMe<sub>2</sub>Ph (3c)]. The clusters (3b) and (3c) were formulated on the basis of the similarity of their i.r. spectra‡ to that of the fully structurally characterised

<sup>†</sup> *Crystal data* for (**3a**):  $[Os_{10}Au_4C(CO)_{24}{P(C_6H_{11})_3}_3]$ , C<sub>79</sub>H<sub>99</sub>Au<sub>4</sub>O<sub>24</sub>Os<sub>10</sub>P<sub>3</sub>, *M* = 4215.45, triclinic, space group *P*1 (No. 2), *a* = 23.402(4), *b* = 15.795(3), *c* = 15.278(3) Å, α = 107.21(2), β = 99.16(2), γ = 84.39(2)°, *U* = 5317.95 Å<sup>3</sup>, *Z* = 2, *D<sub>c</sub>* = 2.632 g cm<sup>-3</sup>, *R* = 0.0525 (*R<sub>w</sub>* = 0.0516) for 9095 reflections with *I/σ(I)* ≥ 3.0 corrected for absorption [µ(Mo-*K<sub>α</sub>*) = 168.14 cm<sup>-1</sup>]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $<sup>\</sup>ddagger$  *I.r. spectroscopic data* [v<sub>CO</sub>/cm<sup>-1</sup> in tetrahydrofuran (THF)]: (3a) 2059 s, 2018 vs; (3b) 2060s, 2018 vs; (3c) 2060s, 2018 vs, (4) 2099 w, 2078 s, 2039 vs.

Scheme 1. Reagents and conditions: i, 4 equiv. [{AuPR<sub>3</sub>}<sub>3</sub>O][BF<sub>4</sub>], THF, 5 min; ii, 24 h stirring in THF, then 0°C for 6-7 days; iii, 1 equiv. [{AuPPh<sub>3</sub>}<sub>3</sub>O][BF<sub>4</sub>], THF, 45 min.

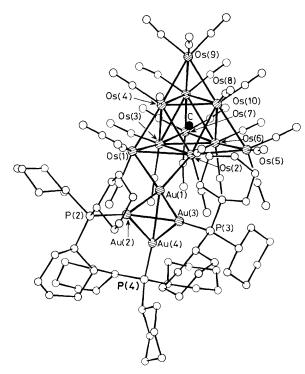



Figure 1. Molecular structure of  $[Au_4Os_{10}C(CO)_{24}{P(C_6H_{11})_3}]$  (3a). Principal bond distances are (Å) (max. e.s.d. 0.002 Å): Os(1)–Os(2) 3.025, Os(1)–Os(3) 2.762, Os(1)–Os(4) 2.754, Os(2)–Os(3) 2.927, Os(2)–Os(4) 2.909, Os(2)–Os(5) 2.873, Os(2)–Os(6) 2.886, Os(2)–Os(10) 2.893, Os(3)–Os(4) 2.890, Os(3)–Os(6) 2.859, Os(3)–Os(7) 2.810, Os(3)–Os(8) 2.856, Os(4)–Os(8) 2.850, Os(4)–Os(9) 2.796, Os(4)–Os(10) 2.852, Os(5)–Os(6) 2.753, Os(5)–Os(10) 2.756, Os(6)–Os(7) 2.777, Os(6)–Os(8) 2.877, Os(6)–Os(10) 2.875, Os(7)–Os(8) 2.762, Os(8)–Os(9) 2.763, Os(8)–Os(10) 2.858, Os(9)–Os(10) 2.802, Os(2)–Au(1) 2.759, Os(1)–Au(1) 2.808, Au(1)–Au(2) 2.692, Au(1)–Au(3) 2.665, Au(1)–Au(4) 2.678, Au(2)–Au(3) 2.758, Au(2)–Au(4) 2.752; mean Os–C(carbide) 2.03(3).

cyclohexyl species (**3a**). The fast atom bombardment (f.a.b.) mass spectrum of (**3a**) shows a molecular ion at 4231 daltons for  $[Os_{10}Au_4C(CO)_{24}{P(C_6H_{11})_3}]$  based on <sup>192</sup>Os, which corresponds to the established molecular formula.§

In the heteronuclear cluster (3a) the tetracapped octahedral metal geometry of the  $Os_{10}$  dianion (1) is retained, and one

gold atom of the Au<sub>4</sub> tetrahedron bridges the outer edge of an Os<sub>4</sub> capping group (Figure 1), so that the bridging gold atom is in an unusual five co-ordinate site, The Os–Os bond bridged by the gold atom of 3.025(2) Å is the longest in the structure and is very much longer than the other Os–Os capping bonds {mean 2.783(2) Å}. This bond is also considerably longer than the bridged Os–Os bond length of 2.962(1) Å observed for [Os<sub>10</sub>C(CO)<sub>24</sub>AuPPh<sub>3</sub>] (**2b**).<sup>4</sup> The unsymmetrical edge-bridging bonding mode adopted by the gold atom in (**3a**) [Au–Os(1) 2.808(2) and Au–Os(2) 2.759(1) Å] may be the result of short contacts between the gold atom and the effectively close packed carbonyls [Au  $\cdots$  C(carbonyl) 2.66–2.76 Å].

Homonuclear tetragold species are rare and the mean Au-Au bond length in the gold tetrahedron of (**3a**) is 2.713(2) Å which is considerably shorter than that in the tetrahedral cluster  $[Au_4(\mu-I)_2(PPh_3)_2]$  of 2.793(2) Å.<sup>5</sup>

The <sup>1</sup>H and <sup>31</sup>P-{<sup>1</sup>H} n.m.r. spectra in  $CD_2Cl_2$  for the derivatives (3a)—(3c) show evidence of fluxional behaviour. For example the <sup>1</sup>H n.m.r. spectrum of (3c) shows one doublet down to 240 K [ $\delta$  +1.94, <sup>2</sup>*J*(PH) 10.2 Hz],¶ and the <sup>31</sup>P-{<sup>1</sup>H} n.m.r. spectra of all three derivatives in CD<sub>2</sub>Cl<sub>2</sub> show only one broad resonance down to 220 K. Dynamic behaviour of the AuPR<sub>3</sub> group is frequently observed for homo- and heteronuclear clusters, and results from the ease with which the Au-Au bond may be broken or re-formed.6-8 For each of the compounds (3a)—(3c) the equivalence of the three AuPR<sub>3</sub> groups on the n.m.r. time scale may result from a simple rotation of the triangle Au(2), Au(3), and Au(4) round the multicentre bond to the sp hybrid orbital of Au(1). On addition of PPh<sub>3</sub> to (3b)  $[Os_{10}C(CO)_{24}AuPPh_3]^-$  (2b) is formed irreversibly, ruling out the possibility that the equivalence of the organophosphine ligands in solution results from an intermolecular process.7

The treatment of  $[Os_{10}Au_4C(CO)_{24}(PPh_3)_3]$  (**3b**) with a further one equivalent of  $[(AuPPh_3)_3O]$  [BF<sub>4</sub>] (see Scheme 1) affords the penta-gold decaosmium cluster  $[Os_{10}Au_5C-(CO)_{24}(PPh_3)_4]^+$  (**4**) in 80% yield (on recrystallisation).‡ This cluster has been characterised on the basis of its f.a.b. mass spectrum, which has m/z 4637 daltons corresponding to this formulation.¶ Variable temperature <sup>31</sup>P-{<sup>1</sup>H} n.m.r. studies reveal the presence of four resonances at room temperature consistent with a structure containing four inequivalent phosphorus environments.∥ This is in marked contrast to the

<sup>§</sup> F.a.b. mass spectral data (using nitrobenzyl alcohol matrix): (3b) m/z 4232 corresponds to  $[Os_{10}Au_4C(CO)_{24}{P(C_6H_{11})_3}_3]$  (negative ion); (4) m/z 4637 corresponds to  $[Os_{10}Au_5C(CO)_{24}{PPh_3}_4]$  (positive ion).

<sup>¶ &</sup>lt;sup>1</sup>*H N.m.r. spectroscopic data* ([<sup>2</sup>H<sub>4</sub>]-THF, 400.13 MHz): (**3a**)  $\delta$  +1.11—2.42 (m); (**3b**)  $\delta$  +7.42—7.83 (m); (**3c**)  $\delta$  +1.94 [d, <sup>2</sup>*J* (PH) 10.2 Hz],  $\delta$  +7.44—7.81 (m); (**4**)  $\delta$  +7.39—7.86 (m).

<sup>|| &</sup>lt;sup>31</sup>*P*-{<sup>1</sup>*H*} *n.m.r. spectroscopic data* ([<sup>2</sup>H<sub>4</sub>]-THF, 400.13 MHz, referenced to trimethyl phosphite): (**3a**)  $\delta$  −45.34 (s, br.); (**3b**)  $\delta$  −47.10 (s, br.); (**3c**)  $\delta$  −40.27 (s, br.); (**4**)  $\delta$  −43.22 (s),  $\delta$  −44.83 (s),  $\delta$  −46.19 (s),  $\delta$  −49.86 (s) p.p.m.

fluxional behaviour of the tetra-gold decaosmium clusters (3a)—(3c), indicating that the fifth gold atom in (4) may be attached to both the gold tetrahedron *via* a gold–gold bond and to the Os<sub>4</sub> capping group in such a way as to impart rigidity to the metal framework.

We thank the S.E.R.C. (H.R.P.) and St. John's College, Cambridge, for the award of a Research Fellowship to S.R.D.

Received, 5th May 1988; Com. 8/01767K

## References

1 M. J. Freeman, A. G. Orpen, and I. D. Salter, J. Chem. Soc., Dalton Trans., 1987, 379, and references therein.

- 2 L. W. Bateman, M. Green, J. A. K. Howard, K. A. Mead, R. M. Mills, I. D. Salter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Chem. Commun., 1982, 773.
- 3 M. I. Bruce and B. K. Nicholson, Organometallics, 1984, 3, 101.
- 4 D. Braga, B. F. G. Johnson, J. Lewis, M. McPartlin, W. J. H. Nelson, and M. D. Vargas, J. Organomet. Chem., 1983, 246, C69.
- 5 F. Demartin, M. Manassero, L. Naldini, R. Ruggeri, and M. Sansoni, J. Chem. Soc., Chem. Commun., 1981, 22.
- 6 K. P. Hall, B. R. C. Theobald, D. I. Guilmour, D. M. P. Mingos, and A. J. Welsh, J. Chem. Soc., Chem. Commun., 1982, 528.
- 7 L. J. Farrugia, M. J. Freeman, M. Green, A. G. Orpen, F. G. A. Stone, and I. D. Salter, J. Organomet. Chem., 1983, 249, 273.
- 8 S. R. Bunkall, H. D. Holden, B. F. G. Johnson, J. Lewis, G. N. Pain, P. R. Raithby, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1984, 26.